zat
Мудрец
(14945)
2 недели назад
a. ¬a → (d ∧ ¬c)
| a | c | d | ¬a | ¬c | d ∧ ¬c | ¬a → (d ∧ ¬c) |
| — | — | — | — | — | —— | ————– |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 |
b. a ∧ b → c ∨ a ∨ b ↔ ¬c
| a | b | c | a ∧ b | a ∨ b | c ∨ a ∨ b | ¬c | a ∧ b → c ∨ a ∨ b | (a ∧ b → c ∨ a ∨ b) ↔ ¬c |
| — | — | — | —– | —– | ——— | — | —————– | —————————– |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
c. ¬(x ∨ y) ∨ ¬(y ∧ x) ↔ ¬y ∨ ¬x
| x | y | x ∨ y | y ∧ x | ¬(x ∨ y) | ¬(y ∧ x) | ¬(x ∨ y) ∨ ¬(y ∧ x) | ¬x | ¬y | ¬y ∨ ¬x | ¬(x ∨ y) ∨ ¬(y ∧ x) ↔ ¬y ∨ ¬x |
| — | — | —– | —– | ——– | ——– | ———————- | — | — | ——- | ———————————– |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
d. ab ↔ ¬a ∨ ¬b → a ∨ b
| a | b | ab | ¬a | ¬b | ¬a ∨ ¬b | a ∨ b | ¬a ∨ ¬b → a ∨ b | ab ↔ (¬a ∨ ¬b → a ∨ b) |
| — | — | — | — | — | ——- | —– | —————– | ————————- |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |